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Abstract-The classical solution of Nusselt for laminar film condensation on a vertical surface neglects the 
effects of the sensible heat and inertia of the condensate, the drag of the vapor and the curvature of the 
surface. Previous solutions which account for these secondary effects are in forms inconvenient for 
applications. The present paper presents extended solutions in closed form, and hence applicable for 
arbitrary parametric values. These solutions are very accurate for large Pr, but for small Pr are restricted 
to small values of C,AT/I. Both the inertia of the condensate and the drag of the vapor are found to be 

appreciable for Pr < 5. 

1. INTRODUCTION 

IN 1916 Nusselt [l], in a truly pioneering paper, 
derived a solution for laminar condensation of a satu- 
rated vapor on an isothermal, vertical surface, neglect- 
ing the inertia and heat capacity of the condensate and 
the drag of the vapor. This solution implies invariant 
physical properties, negligible viscous dissipation and 
non-rippling flow. He also derived an (erroneous) 
first-order correction for the effect of the specific heat 
of the condensate, a correction for a fixed vapor velo- 
city and a correction for the effect of superheat, and 
discussed the effect of non-condensables semi- 
quantitatively. He further asserted that the results 
for a vertical plate were directly applicable for 
condensation inside and outside vertical tubes and, 
by neglecting the effect of surface tension, readily 
modified his basic solution for condensation outside 
horizontal tubes. 

The basic solution derived by Nusselt has been 
found to be in good functional accord with subsequent 
experimental data although the observed rates of heat 
transfer are somewhat higher than the predicted 
values, owing primarily to rippling of the film. 

Most of the idealizations employed by Nusselt have 
been investigated theoretically and many extensions 
and improvements have been proposed. Only those 
directly relevant to the results herein will be noted. 
Bromley [2] derived an improved first-order correction 
in closed form for the effect of the heat capacity of the 
condensate. Rohsenow [3] used an alternative pro- 
cedure to obtain a similar result. Sparrow and Gregg 
[4] obtained numerical results for the effects of the 
inertia (for Pr from 1 to 100) and heat capacity of the 
condensate (for J E cp( T, - T,)/l up to 2) by solving a 
boundary-layer model for the liquid phase (neglecting 
longitudinal molecular transport and the drag of the 
vapor). Koh et al. [5] solved a boundary-layer model 
for both the condensate and vapor numerically and 
obtained results for a few discrete values of Pr from 
0.003 to 810 and Jfrom 5 x lo-‘to 1.2. This solution 
revealed that the terms of the model representing 
vapor drag become increasingly significant as Pr 

decreases and are in all cases more significant than 
those representing the inertia of the condensate. Koh 
[6] solved the same model approximately, using an 
integral-boundary-layer formulation, and attained 
results in reasonable agreement with the numerical 
solution. Chen [7] derived a solution for a modified 
integral-b undary-layer 

R 
formulation using a per- 

turbatio technique. 
The present paper presents an approximate solution 

of the model of Koh et af. [5] which is accurate for 
most practical values of the parameters and which can 
be easily evaluated for all such values with a hand- 
held computer. Analytical solutions are also provided 
for the effect of curvature on condensation inside and 
outside vertical tubes. 

2. FORMULATION OF MODEL 

The boundary-layer model for the conservation of 
mass, momentum and energy in the stream of con- 
densate on a vertical plate can be written as 

and 

aT aT a2T 
“ax +vdy =uay, 

with 

u=o, 6=0 at x=0 (4) 

u=v=o, T= T, at y=O (5) 

and 

au d 6 
-Pdy=Pu& o 

s 
u dy, T = T, at y = 6. (6) 

The latter condition on the velocity implies that the 
viscous drag of the vapor on the liquid is negligible 
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Greek symbols 
a 

Y 

A 

9 

dimensionless constant 
radius of tube [m] 
dimensionless constant 
dimensionless constant 
specific heat capacity of condensate 
[J kg-’ K-‘1 
diameter of tube [m] 
dimensionless parameter [see equation 

(22)l 
dimensionless parameter defined by 
equation (35) 
dimensionless parameter defined by 
equation (44) 
dimensionless parameter defined by 
equation (36) 
dimensionless parameter defined by 
equation (45) 
acceleration due to gravity [m s-7 

H 
4kv( T8 - Tw) ‘:4 

Nux Pg~x3 11- WPll 
rl 

h heat transfer coefficient [w m- * K- ‘] 
J e,(T,- T,)/A 

K 
4kv( T, - T,)x 

,4u4t 1 - h/P)1 
thermal conductivity [w m- ’ K - ‘1 

6 thickness of film of condensate [m] 
a latent heat of condensation [J kg-‘) 
V kinematic viscosity [m’ s- r] 

P specific density of condensate [kg m- 3] 

PY specific density of vapor [kg m -- ‘1 

k 
Nu, Nusselt number based on diameter, hD/k Q, 
Nu, Nusselt number based on length, hx/k 
M 16Pr/A4 Jt 

Prandtl number, v/a 
radial distance [m] 
temperature [K] 
saturation temperature [K] 
surface temperature [K] 

(T- T.&o - T,) 
component of velocity in x-direction [m s- ‘1 
component of velocity in y-direction [m s- ‘1 
downward distance along surface [m] 
distance from surface [m] 

thermal diffusivity [m’ s- ‘1 
A4/Pr 

tp(l-$y4 

Y[$(l- ;)lii4 

‘611 -&pWx3 > 
l/4 

streamfunction, see equations (8) [m2 s- ‘1. 

1 
and hence that the interfacial shear on the liquid arises and 
primarily from acceleration of the condensing vapor 
to the velocity of the interface. This approximation is u” = +ZW (10) 

confirmed by the numerical solution of Koh et al. [5f with 
who found a negligible dependence of their results on 
/*“. The same approximation was made by Chen [7] @=Q= U=O at q=O (11) 

on the basis of analysis, and indirectly by Koh [6]. 4PrW = W(341-r/W), u = 1 at r] = A (12) 
The relationship between 6 and x is given by the 

overatl energy balance and 

Introduction of the streamfunction defined by 

k($zl,=0 = p$[[l+c,(T,--T)]u du. (7) where (13) 

(14) 

a+ a* u=-w u=z (8) T- T, 
us---- 

Ts-T, 
(15) 

and dedimensionalization by the method of Hellums 
and Churchill [8] identifies a similarity trans- 
formation, and permits reduction of the model to the 

q=y[$(l-:)1”” (16) 

following set of ordinary differential equations : and 

(17) 



Laminar film condensation 1221 

(19) 

Equation (19) implies superiiciahy that H+O as J-+0. 
However 4JjA4 is always finite, even for cP = 0, 
owing to the occurrence of u in the definition of A [see 
equation (17)], and AU{O} is also always finite. 

3. SOLUTtONS 

Although a general solution for finite heat capacity, 
inertia and interfacial drag is developed below, 
solutions in which these effects are neglected individu- 
ally and collectively will first be derived as a basis for 
evaluation of their contribution to condensation. 

3.1. Neg~~g~~le inerria 
As long as the inertia of the liquid is neglected no 

further approximations beyond that for the drag of 
the vapor which resulted in equations (6) and (12) 
are required to obtain the solutions presented below. 
Hence such solutions are presented separately and 
first. 

Finite heat capacity and fiplite irrterfacid drag. 
Letting Pr -+ co in equation (9) but not in equation 
(12) allows for the effect of the acceleration of the 
condensed vapor up to the velocity of the interface 
but neglects the effect of the subsequent acceleration 
of the condensate. Three integrations of the resulting 
reduced form of equation (9) give 

The boundary conditions on # and #‘for q = 0 require 
B = C = 0. The boundary condition on Q, for 9 = A, 
i.e. equation (I 2), requires 

(21) 

whose solution can be expressed as 

E_ -A I-M+JCGXG-? -----..-%= 
A 4 (221 

where 
M = 16Pr/A4. (23) 

The coefhcient E ranges from 1/2 to I as B/A”, and 
hence Pr, increases from 0 to co. 

Then 

@L_- l?A$ 
6 2 

and from equation (10) 

Integrator then gives 

and for 

(25) 

Since the maximum value of 1 is A and E varies from 
l/Z to 1, the constraint of equation (27) can be ex- 
pressed more simply and severely as 

A4(4E- 1) < 32 

and even more severely as 

(29) 

32 “4 
A-y- . 

0 
(301 

Equation (30) proves to be an excessive and hence 
conservative constraint. 

Integrating equation (28) gives 

u= u’(O) [ 
Ed@ “+$&-- 

The condition U(A) = X requires 

U’(0) = l,A[,.(&&)A4 

f . (321 

Then from equation (13) 

t331 

A solution of equation (33) in closed form is poss- 
ible if the explicit and implicit terms in A” and higher 
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in equation (33) are dropped. This solution may be 
accomplished by specifying arbitrary values of E and 
4J/A4 and solving the resulting quadratic in A4. Alter- 
natively, a solution can be obtained for specifying E 
and J by multiplying through by A4 before dropping 
terms in A” and higher. This latter procedure yields: 

A4=[l+&(;-&)](l-&i%,2F (34) 

where 

E 1 
F=E-m+ 

(35) 

and 

G=(&)/[l+$&$$ (36) 

H can be calculated from the resulting value of A4 
and the specified values of E and 4J/A4 or J using 
equations (19) and (32). The solution for specified 
4 J/A4 corresponds to 

4J= ; A4. 
0 

(37) 

The value of Pr to which these solutions correspond 
is found by rearranging and representing equation 
(21) as 

Pr = E(2E- l)A4 

16(1-E) 
(38) 

where E is the specified and A4 the calculated value, 
respectively. 

An exact solution of equation (33) for speciJied 
values of J and Pr is possible by iteration. The 
required amount of calculation is not significantly 
greater than the evaluation of the above solution in 
closed form. The terms of higher order than those 
given explicitly in equation (33) were not found to 
be significant for physically representative conditions. 

Finite heat capacity but negligible interfacial drag. 
This condition is established by letting Pr + CC in 
equation (12) or (21) which leads to E = 1. Equation 
(33) is then reduced to 

4J 3A4 9A* 

4 
l-32+2048+“’ 

> 

A4 
= l-G+ $& + ‘. . (39) 

Neglecting the terms in A8 and higher, after mul- 
tiplying through by A4, corresponding to specified 4J 
rather than specified 4J/A4, gives 

4J 3J 
p= 1+-8_ (40) 

hence 

H= 1+;‘i4. ( > (41) 

Equation (40) is analogous to the perturbation for 
small J derived by Nusselt, [l]. However, he 
erroneously inverted the temperature distribution 
with respect to y and thereby obtained 

(42) 

Neglecting the terms in A ’ * and higher in equation 
(39) for specified J results in a quadratic expression in 
A4 which can be solved to obtain 

where 

G’=l+;J. (45) 

Then H follows directly from equation (32) for E = 1 
and equation (19). 

This quadratic solution is slightly more accurate 
for negligible shear and drag than the approximate 
solutions derived by Bromley [2] and Rohsenow [3] 
which are closely represented by 

The correspondence, except for a sign, between equa- 
tions (42) and (46) is fortuitous. 

Equation (39) can be solved iteratively without 
neglecting the implicit higher-order terms in the series. 
but the results differ negligibly from equation (43) for 
physically realistic conditions. 

Negligible heat capacity and drag (the basic solution 
of Nusselt). For this extreme limiting condition the 
dimensionless differential model reduces to 

Q”’ = 1 (47) 

U” = 0 (48) 

Q’s@,= UC0 at q=O (49) 

cD”=o, U=l at q=A (50) 

and 

4JU’{O} = -3@(A). (51) 

The solution is 

.=11’_!2 
6 2 



Laminar film condensation 1223 

U = q/A (53) 

A = (4J)“4 (54) 
and 

w= 1. (55) 

3.2. Finite inertia 

The non-linear terms in equation (9) appear to pre- 
clude an exact, analytical solution for finite Pr. The 
evaluation of this term using the velocity distribution 
of equation (24) for Pr -+ co (negligible inertia and 
negligible interfacial drag) gives 

a”‘= ,_g. (56) 

Integrating thrice and applying W(0) = Q{O} = 0 
gives 

(57) 

Finite heat capacity andjinite interfacial drag. Finite 
interfacial drag requires the use of equation (12) as a 
boundary condition. The result is 

,_v_T+L 
24 1920 92160 

= 0 (58) 

where 

y = A4/Pr. 

Equation (57) can then be rewritten as 

Equation (10) now becomes 

Integration gives 

and for 

A4 EA4 A* < , 
---- 
32 8 3840Pr 

U’ = U’{O} 
EAq’ A*@ 

lf $ - 8 - - 
3840Pr 

1 tj4 EAr/’ A2q6 ’ 
+j z-7--- 

( 3840Pr > 1 ’ “’ 

Then integration with U(0) = 0 gives 

u = U’(0) 

From U(A) = 1, 

U’(Oj = l!“[“,(&$) 

+A8 
1 1 E E2 

18432~26880Pr-2048+896 +... > 1 
From equation (13) 

(66) 

1 1 f... . 
(67) 

If y is specified (arbitrarily), equation (58) which is 

a quadratic in E can be solved analytically. If terms 
in A ’ 2 and higher are dropped, equation (67) becomes 
a quadratic in A4 and can in turn be solved analyti- 
cally. Finally, H can be calculated from equations (19) 
and (66). The Prandtl number to which this solution 

(59) 
corresponds is equal to A4 divided by the specified y. 
However, the iterative solution of equations (58) and 
(67) does not require significantly more computation, 
avoids neglecting the higher-order turns in A and pro- 

(60) vides results for prespecified Pr as well as J. 
Finite heat capacity but negligible interfacial drag. 

This reduced case is attained by letting Pr + 00 in 
equation (12) or (58). The result is 

(61) 
E= 1-g (68) 

which, when substituted in equation (67), gives 

(62) $[l-;A4+(&+&),‘+...j 

(63) 

~ ABf... 
> 1 . (69) 

(64) 
Equation (69) can be solved as before, i.e. as a quad- 

ratic in A4 if terms in A ’ ? and higher are dropped, or 
iteratively in general. 

3.3 Comparison of solutions 
v9 

+ 18432 + 

E2A2q7 EAT/ * 

896 
_-+... 1 Illustrative calculations were carried out for a wide 

2048 ’ (65) array of values of J and Pr to provide a basis for 
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comparison of the various solutions described above 
with each other, with the prior analytical solutions of 
Nusselt [1], Bromley [2] and Rohsenow [3], and with 
the numerical solution of Koh et al. [S]. Comparisons 
with the integral-boundary-layer solutions of Koh [6] 
and Chen [7] were not feasible since numerical values 
were not provided. 

Equations (67) and (58) provide results in close 
agreement with the numerical solution for all J for 
Pr > 1 and for small J for small Pr. Indeed, the ana- 
lytical and iterative results obtained from equations 
(58) and (67) reveal slight random discrepancies in the 
numerical solution of Koh et al. [5], presumably owing 
to roundoff errors, and are therefore possibly more 
accurate. Such discrepancies are however far less than 
the inherent errors in the general model owing to the 
neglect of physical property variation, rippling, etc. 
and hence not of practical significance. 

The effects of vapor drag and inertia are both neg- 
ligible for Pr > 5 hence, all of the approximate sol- 
utions, except that of Nusselt, are acceptable for that 
regime. Conversely, both effects are appreciable and 
of the same order of magnitude for Pr < 1, both 
decreasing the rate of heat transfer; solutions which 
neglect either are not then valid. 

As Pr decreases below unity and J increases the 
approximation made herein for the effect of the inertia 
of the condensate becomes inaccurate, resulting in the 
overprediction of the rate of condensation. 

As also noted by Koh et al. [5], Koh [6] and Chen 
[7], the heat capacity of the liquid increases the rate 
of heat transfer for Pr > 1 but has the opposite effect 
forPr< I. 

. 4. EFFECT OF CURVATURE 

When a vapor condenses on the outside of a round, 
vertical tube the effect of curvature is to provide a 
greater area for flow and a greater area for heat trans- 
fer for the same film thickness, thereby resulting in a 
greater rate of condensation. When a vapor condenses 
inside a vertical tube these effects are registered con- 
versely. Solutions for these two situations are readily 
derived for the extreme limiting conditions postulated 
by Nusselt, including negligible drag, heat capacity 
and inertia (Pr -+ 0, J--t 0). 

Condensation outside a vertical tube 
Equation (1) is eliminated and equation (2) is 

replaced by 

(70) 

and equation (3) by 

(71) 

The boundary conditions become 

IA = 0, T= T, at r=a (72) 

du 
z=O, T=T, at r = a+6. (73) 

Solution of equations (70) and (71) with these 
conditions results in 

and 

T- T, In {r/a> 
-= 
Ts-Tw In { 1+(6/a)}’ (75) 

The relationship between x and 6 is given by 

2nok($lz0 = /p& [“u*2nr dr. (76) 

Substituting for T and u from above gives 

Letting 
(77) 

ln{l+~~=~-~(~~+-.. (78) 

simplifying and integrating then gives 

(79) 

Hence for S/a (( 1 

(80) 

k k 

= a In (1 +@/a)} z 6[i -$6/a)] 
(81) 

(1 -:[K/(l +jK1/4)]1/4)K1/4 (82) 

The series expansions and the approximation incor- 
porated in this derivation are quite justified since 6/a 
and K are far less than unity for all practical con- 
ditions. The factor 

(1-t $K”‘)“*/{1-f[K/(l+ :K”4)]1’4} 

represents the increased rate of heat transfer due 
to curvature. This correction is significant for 
K>30x10-60rNu,<22. 
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Condensation inside a vertical tube 

The above model is changed only by the boundary 
condition 

du 
z=O, T=T, at r=a-6 (83) 

The solutions for the effect of curvature, although 
in the form of perturbations of the Nusselt solution, 
are applicable for the more general conditions noted 
above. 

and the result is 

For Pr > 1 the heat capacity of the liquid increases 
the rate of heat transfer as implied by the approximate 
solutions of Bromley [2] and Rohsenow [3], but has 
the opposite effect for Pr < 1. 

hD 2(1 -3K”4)“4 
-= 
k {l +f[K/(l -jK”4)]“4}K”4’ 

(84) 

The factor 

(1- :K”4)“4/{1+ h[K/(l- @“4)]“4} 

The effect of curvature increases the rate of heat 
transfer significantly for condensation outside a ver- 
tical tube only for conditions such that Nu,, < 21, and 
decreases the rate of heat transfer for condensation 
inside a vertical tube correspondingly. 

represents the decreased rate of heat transfer due to 
internal curvature, which is significant (greater than 
5%) for K > 35 x lo6 or Nu, < 26. 
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CONDENSATION EN FILM LAMINAIRE 

R&m&-La solution classique de Nusselt pour la condensation en film sur une surface verticale ntglige 
les effets de la chaleur sensible et de l’inertie du condensat, la trainee de la vapeur et la courbum de la surface. 
Les solutions qui tiennent compte de ces effets secondaires ont des formes peu adapt&es a l’utilisation. Cette 
etude presente des solutions &r&ales applicables pour des valeurs parametriques arbitraires. Ces solutions 
sont tres pr&cises pour de grands Pr mais sont limit&es aux faibles valeurs de C, AT/n pour des petits Pr. 

L’inertie du condensat et la trainee de la vapeur sont appreciables tous les deux lorsque Pr < 5. 

LAMINARE FILMKONDENSATION 

Zusammenfassung-Die klassische Lijsung von Nusselt fur die laminare Filmkondensation an einer sen- 
krechten Obertl~che vernachllssigt die Einfliisse der fiihlbaren W&me und der Trligheitskrafte des Kon- 
densats, die der Damnfschubkrafte und die der Krtimmune der KondensatfilmobertlLhe. Die friiheren 
Liisungen, die sich rnL diesen sekundaren Einthissen befass&, sind in der Regel fiir Berechnungen unge- 
eignet. Der vorliegende Bericht gibt erweiterte Losungen in geschlossener Form an, die daher fiir beliebige 
Parameterwerte anwendbar sind. Die Lijsungen sind sehr genau fur gro8e Prandtl-Zahlen, aber beschriinkt 
auf kleine Werte cr * AT/1 fur kleine Prandtl-Zahlen. Sowohl die Tragheitskrafte des Kondensata wie such 

die Schubkrlfte des Dampfes zeigen fiir Pr < 5 betrachtliche Auswirkungen. 
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JIAMMHAPHAJI nJlEHOqHAII KOHJJEHCAIJW 

AwoTauw-B KnaCCWieCKOB sanare HyccenbTa 0 JlaMHHapHOfi IUleHOqHOii KOHLlCHCaUHM Ha BepTu- 

KanbHoii noBepxHocTA npeH6peraeTca 3aBtmm4ocTbtof$mwiecK~x c~oFicmTTehmepaTypb~.smnHwe~ 

MHepwioHHblx cm,TpeH~e~ Ha rpamuepasnenanap-minKaanneHKaH ~pm3~3~oB noBepxHocTM.PaHee 

"Ony',eHHb,e peU,eHHK,yWTblBafOL"~e 3TA BTOpH'fHble 3+@eKTbl,HeyL106Hbl iU,S "paKTWeCKOr0 MCnOnb- 

JOBIHMII. B RaHHOii pa6oTe DalOTCII pelLleHMH B 3aMKHyTOti $OpMe, flpMMeHHMbIC iUl51 npOM3BOflbHblX 

3HareHHB napaMeTpoB.3Ts peureHH* nOCTaTO'4HO TO',Hb, LlJlR 6onbmix wcen IlpaHnTnn,t3 TO spehln, 

KaK nnR ManbIX OrpaHHWBaIOTC~ He6OnbLlNiMH 3HaYeHASMU C,AT/i. HaiineHo. 'ITO BJIHRHMe MHep- 

W,OHHb,xCHnATpeHAII~apa3aMeTHbl"pli f,'< 5. 


