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Laminar film condensation
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Abstract—The classical solution of Nusselt for laminar film condensation on a vertical surface neglects the

effects of the sensible heat and inertia of the condensate, the drag of the vapor and the curvature of the

surface. Previous solutions which account for these secondary effects are in forms inconvenient for

applications. The present paper presents extended solutions in closed form, and hence applicable for

arbitrary parametric values. These solutions are very accurate for large Pr, but for small Pr are restricted

to small values of C,AT/A. Both the inertia of the condensate and the drag of the vapor are found to be
appreciable for Pr < 5.

1. INTRODUCTION

IN 1916 Nusselt [1], in a truly pioneering paper,
derived a solution for laminar condensation of a satu-
rated vapor on an isothermal, vertical surface, neglect-
ing the inertia and heat capacity of the condensate and
the drag of the vapor. This solution implies invariant
physical properties, negligible viscous dissipation and
non-rippling flow. He also derived an (erroneous)
first-order correction for the effect of the specific heat
of the condensate, a correction for a fixed vapor velo-
city and a correction for the effect of superheat, and
discussed the effect of non-condensables semi-
quantitatively. He further asserted that the results
for a vertical plate were directly applicable for
condensation inside and outside vertical tubes and,
by neglecting the effect of surface tension, readily
modified his basic solution for condensation outside
horizontal tubes.

The basic solution derived by Nusselt has been
found to be in good functional accord with subsequent
experimental data although the observed rates of heat
transfer are somewhat higher than the predicted
values, owing primarily to rippling of the film.

Most of the idealizations employed by Nusselt have
been investigated theoretically and many extensions
and improvements have been proposed. Only those
directly relevant to the results herein will be noted.
Bromley [2] derived an improved first-order correction
in closed form for the effect of the heat capacity of the
condensate. Rohsenow [3] used an alternative pro-
cedure to obtain a similar result. Sparrow and Gregg
[4] obtained numerical results for the effects of the
inertia (for Pr from 1 to 100) and heat capacity of the
condensate (for J = ¢,(T,—T,)/A up to 2) by solving a
boundary-layer model for the liquid phase (neglecting
longitudinal molecular transport and the drag of the
vapor). Koh et al. [5] solved a boundary-layer model
for both the condensate and vapor numerically and
obtained results for a few discrete values of Pr from
0.003 to 810 and J from 5 x 10~ to 1.2. This solution
revealed that the terms of the model representing
vapor drag become increasingly significant as Pr

decreases and are in all cases more significant than
those representing the inertia of the condensate. Koh
[6] solved the same model approximately, using an
integral-boundary-layer formulation, and attained
results in reasonable agreement with the numerical
solution. Chen {7] derived a solution for a modified
integral-boundary-layer formulation using a per-
turbatiorﬁechnique.

The present paper presents an approximate solution
of the model of Koh ez al. [5] which is accurate for
most practical values of the parameters and which can
be easily evaluated for all such values with a hand-
held computer. Analytical solutions are also provided
for the effect of curvature on condensation inside and
outside vertical tubes.

2. FORMULATION OF MODEL

The boundary-layer model for the conservation of
mass, momentum and energy in the stream of con-
densate on a vertical plate can be written as

%+%=0 M
u% +ug—:=v%}: +g<l—%) )

and

oT or 0°T

Uz +05;=a5}7 3)

with
u=0, 0=0 at x=0 4)
u=v=0, T=T7T, aty=0 (5)

and

Su d [?

-u—a;=puaﬁ udy, T=T, at y=94. (6)

The latter condition on the velocity implies that the
viscous drag of the vapor on the liquid is negligible
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NOMENCLATURE
A dimensionless constant Pr Prandtl number, v/x
a radius of tube [m] r radial distance [m]
B dimensionless constant T temperature [K]
C dimensionless constant T, saturation temperature [K}
¢, specific heat capacity of condensate T. surface temperature [K]
[J kg_ 'K~ l] U (T_ Tw)f((Ts’“ Tw)
D diameter of tube [m] u component of velocity in x-direction [m s~}
E dimensionless parameter [see equation v component of velocity in y-direction [m s~ ]
(22)] x downward distance along surface [m]
F  dimensionless parameter defined by y distance from surface [m]
equation (35)
dimensi
F e:}rzztiinsrzﬁ)s parameter defined by Greek symbols o
dimensionless parameter defined by & th4ermal diffusivity [m* s~ ]
equation (36) v AYPr
& dimensionless parameter defined by g PAYES
equation (45) A J [xTw (1 - 'pl)]
g acceleration due to gravity [m s~
4o(T,~T,) " " y!:i(l - f"l)] "
s W X0
o “"{pgw i »—(pv/p)]} A0
h  heat transfer coefficient [Wm~-? K1} i ;hlckness of ?lm of cond‘ensatci([ni]‘
J eTi—T.)i gtent hgat o copdens?nc_m [Tkg~ 1
e v kinematic viscosity fm? s~}
K 4kv(T,~ T )x P spem:ﬁc dens%ty of condensate {kg m~3]
pgla’[l—(p./p)] p, specific density of vapor [kg m 7]
k thermal conductivity [W m~! K] "
Nu, Nusselt number based on diameter, AD/k o Y {___”._.,__3_3.}
Nu, Nusselt number based on length, Ax/k gl1—=(p./p)lo’x
M 16Pr/A* ¥ streamfunction, see equations (8) [m*s~].
and hence that the interfacial shear on the liquid arises  and
primarily from acceleration of the condensing vapor
to the velocity of the interface. This approximation is U= 10U (10)
confirmed by the numerical solution of Koh ez al. [5]  with
who found a negligible dependence of their results on
i, The same approximation was made by Chen [7] ¥=0=U=0 atyn=0 an
on the basis of analysis, and indirectly by Koh [6]. 4Pre’ = (30 —n®), U=1 atg=A (12)
The relationship between & and x is given by the
overall energy balance and
T d [ 4JU{A} = —30{A} (13
k(a—y)y=0 = pd‘";c'j; [/1+CP(TS-—*7')]U dy. O where
b 1/4
Introduction of the satreamfunctu;n defined by o v/{q[l PP 3} (14)
u=~-ég, v=§iﬁ 8 U= T-T, a5
Ts - Tw
and dedimensionalization by the method of Hellums e
and Churchill [8] identifies a similarity trans- "= y[ 9 (1 - &)] (16)
formation, and permits reduction of the model to the xav P
following set of ordinary differential equations: and
v — L oo — i@y A=$ —"-(1—5’1)]”4 an
7 — 5 00 @) -1 =0 ©) =8| zal173
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Also
x f[éT x*g{1~(p,/p)] ,
e 2 (1)
(18
or

4T, ~T,)

1/4
= e e O amn tdrrr
H=Nu, {pgAxsn -(pv/p)l} @) U0}

19

Equation (19) implies superficially that H—0 as J— 0.
However 4J/A* is always finite, even for ¢, =0,
owing to the occurrence of « in the definition of A [see
equation (17)], and AU{0} is also always finite.

3. SOLUTIONS

Although a general solution for finite heat capacity,
inertia and interfacial drag is developed below,
solutions in which these effects are neglected individu-
ally and collectively will first be derived as a basis for
evaluation of their contribution to condensation.

3.1. Negligible inertia

As long as the inertia of the liquid is neglected no
further approximations beyond that for the drag of
the vapor which resulted in equations (6) and (12)
are required to obtain the solutions presented below.
Hence such solutions are presented separately and
first.

Finite heat capacity and finite interfacial drag.
Letting Pr — oo in equation (9) but not in equation
(12) allows for the effect of the acceleration of the
condensed vapor up to the velocity of the interface
but neglects the effect of the subsequent acceleration
of the condensate. Three integrations of the resulting
reduced form of equation (9) give

3 A 2
®="+ = +Br+C.
The boundary conditions on @ and ®'for 5 = 0 require
B = C = 0. The boundary condition on @ for y = A,
i.e. equation (12), requires

20)

2 el I
A+A(2 )7 =0 @1)

whose solution can be expressed as

-4 1-M+/1+6M+ M )
=g = 7 @
where
= 16Pr/A*. 23)

The coefficient E ranges from 1/2 to 1 as Pr/A%, and
hence Pr, increases from 0 to co.
Then

EAn?
2

3
o="1 - 24)
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and from equation (10)
U = (W{ - 33f-g—’}-z-)U (25)
Integration then gives
U = U{0} exp («2% - E—iﬁ) (26)
and for
Ig - F—%Ei’ <1 @27

v (5 20)

1{n* eAn’} N
+§(§§~'-—é— -+ . (28

Since the maximum value of 1 is A and E varies from
1/2 to 1, the constraint of equation (27) can be ex-
pressed more simply and severely as

A*(4E—-1) < 32 (29)
and even more severely as
14
A< (332) ) (30)

Equation (30) proves to be an excessive and hence
conservative constraint.
Integrating equation (28) gives

o n°  EAn!
U‘U{O}["+1eo )

’,9 EAQB + EzAZ’?? + 3
+ 18432 " 2048 T 896

The condition U{A} = 1 requires

1
U{0} = 1/A[1+(160 32)A4

1 E_ E),.
+\18432 ~ 2048 T 396

] 31

] (32)

Then from equation (13)
4J 1 P
K’;[l + (32 )A

1 E .
+ (2048 256t 128)A }
3E—1 1 E\,
-5+ (o 33:)”

i E B,
+\ 18432 ~ 2048 T 896

A solution of equation (33) in closed form is poss-
ible if the explicit and implicit terms in A'? and higher
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in equation (33) are dropped. This solution may be
accomplished by specifying arbitrary values of E and
4J/A* and solving the resulting quadratic in A*. Alter-
natively, a solution can be obtained for specifying E
and J by multiplying through by A* before dropping
terms in A'? and higher. This latter procedure yields:

. 8 (E 1
A= [l+ﬁ_—1(-§—§2—>](1—«/14FG)/2F (34)

where

o E_ 1 Y1 _E B
=327 160 T \3E=1/\2048 ~ 256 T 128

(35)

G_(SJ /1 8 (E_ I\
=\zg=1)/| " 3E=i\s "3/ ©9

H can be calculated from the resulting value of A*
and the specified values of E and 4J/A* or J using
equations (19) and (32). The solution for specified
4J/A* corresponds to

4J
e(
The value of Pr to which these solutions correspond

is found by rearranging and representing equation
(21) as

and

(37

EQE—-1)A*
Pr= "—1—6—(1—_-5— (38)
where E is the specified and A* the calculated value,
respectively.

An exact solution of equation (33) for specified
values of J and Pr is possible by iteration. The
required amount of calculation is not significantly
greater than the evaluation of the above solution in
closed form. The terms of higher order than those
given explicitly in equation (33) were not found to
be significant for physically representative conditions.

Finite heat capacity but negligible interfacial drag.
This condition is established by letting Pr — co in
equation (12) or (21) which leads to E = 1. Equation
(33) is then reduced to

a7 3A"+9A8+m
A\ 32 72048
A* 11A®

“w it Y

Neglecting the terms in A® and higher, after mul-
tiplying through by A*, corresponding to specified 4/
rather than specified 4J/A*, gives

4J 3J

AR 40
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hence

1/4
H= <1 + 3—J> . 4n
8
Equation (40) is analogous to the perturbation for
small J derived by Nusselt, [1]. However, he
erroneously inverted the temperature distribution
with respect to y and thereby obtained

5] 1/4
pe(i- )

Neglecting the terms in A'? and higher in equation
(39) for specified J results in a quadratic expression in
A*which can be solved to obtain

ol 16F"J
2F (G

(42)

At = (43)
where
F = LY 44
=502 (44)
3
G'=1+3 /. (45)

Then H follows directly from equation (32) for E =1
and equation (19).

This quadratic solution is slightly more accurate
for negligible shear and drag than the approximate
solutions derived by Bromley [2] and Rohsenow [3]
which are closely represented by

5 \U4
n=(1+35)"

The correspondence, except for a sign, between equa-
tions (42) and (46) is fortuitous.

Equation (39) can be solved iteratively without
neglecting the implicit higher-order terms in the series.
but the results differ negligibly from equation (43) for
physically realistic conditions.

Negligible heat capacity and drag (the basic solution
of Nusselt). For this extreme limiting condition the
dimensionless differential model reduces to

(46)

=1 (47)
U’ =0 (48)
O=p=U=0 at =20 (49)
=0, U=1 at p=A (50)
and
4JU’{0} = —30{A}. (51)
The solution is
7' A
&= 3 3 (52)
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U=n/A (53)
A= (4))* (54)

and
H=1. (55)

3.2. Finite inertia

The non-linear terms in equation (9) appear to pre-
clude an exact, analytical solution for finite Pr. The
evaluation of this term using the velocity distribution
of equation (24) for Pr — oo (negligible inertia and

negligible interfacial drag) gives
’7 2A2
1 — . 6
O =1~ (56)

Integrating thrice and applying ®'{0} = ®{0} =0
gives
B n 3 A 2’,’ 5 Ar] 2
T 6 480Pr ' 2 - S
Finite heat capacity and finite interfacial drag. Finite
interfacial drag requires the use of equation (12) as a

boundary condition. The result is

vE? v
8 +(1—16 3840)F
Yy v ¥’
S (5 P A A A
( 2 1920+92160> 0 &8
where

y = A*/Pr. (59)
Equation (57) can then be rewritten as
B 7 EAp® AW}
®=% 2 480Pr (60)
Equation (10) now becomes
, _(n’ 3EAp® AP\
v —(8 73 “eaor)V O
Integration gives
U/ n4 EA”[3 Az,’s
- V== =20 2
n {U’{O}} B8 o &P
and for
A% EA* A? <1 6
32 8 3840Pr (63)
114 EA'IJ AZ’,I(J
U'= U0} 145m — — — o
{ }[ T3 778 3%40p

1 ’74 EA’?3 AZ”G 2
+5<§—_8_—3840Pr A

Then integration with U{0} = 0 gives

. n°  EAn® A%y
U= U0} [’” 160 32 26880Pr
"9 EZA27[7 EAV[S
tis432 v 806 208 T | 69
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From U{A} =1,
1 E
’ — 4 _
U{0} = I/A[1+A <160 32)

18432~ 26880Pr 2048 ' 896 + '

(66)

From equation (13)
47
i
A i E BN,
+2°\ 2048 ~ 38407 ~ 256 T 128
3E 1 A* (1 E
=<7‘§+W>[‘+A (Tw‘ﬁ)

+A3 ! ! _ E + E_2 4 .
18432 26880Pr 2048 896 ’
(67)

If y is specified (arbitrarily), equation (58) which is
a quadratic in E can be solved analytically. If terms
in A'? and higher are dropped, equation (67) becomes
a quadratic in A% and can in turn be solved analyti-
cally. Finally, H can be calculated from equations (19)
and (66). The Prandt] number to which this solution
corresponds is equal to A* divided by the specified y.
However, the iterative solution of equations (58) and
(67) does not require significantly more computation,
avoids neglecting the higher-order turns in A and pro-
vides results for prespecified Pr as well as J.

Finite heat capacity but negligible interfacial drag.
This reduced case is attained by letting Pr — oo in
equation (12) or (58). The result is

A4

E=l-55

(68)

which, when substituted in equation (67), gives
4J 3 9 19
— _ A4 - - 8 e
Ad [1 24 +(2048 * 38401%)A + ]
(oA : A*
B 160 Pr 40

11 17 AS oo
t\16128 T 3ag0rr )t T

Equation (69) can be solved as before, i.e. as a quad-
ratic in A*if terms in A'® and higher are dropped, or
iteratively in general.

(69)

3.3 Comparison of solutions
Tllustrative calculations were carried out for a wide
array of values of J and Pr to provide a basis for
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comparison of the various solutions described above
with each other, with the prior analytical solutions of
Nusselt [1], Bromley [2] and Rohsenow [3], and with
the numerical solution of Koh et al. [5]. Comparisons
with the integral-boundary-layer solutions of Koh [6]
and Chen [7] were not feasible since numerical values
were not provided.

Equations (67) and (58) provide results in close
agreement with the numerical solution for all J for
Pr = 1 and for small J for small Pr. Indeed, the ana-
lytical and iterative results obtained from equations
(58) and (67) reveal slight random discrepancies in the
numerical solution of Koh er al. [5], presumably owing
to roundoff errors, and are therefore possibly more
accurate. Such discrepancies are however far less than
the inherent errors in the general model owing to the
neglect of physical property variation, rippling, etc.
and hence not of practical significance.

The effects of vapor drag and inertia are both neg-
ligible for Pr > 5 hence, all of the approximate sol-
utions, except that of Nusselt, are acceptable for that
regime. Conversely, both effects are appreciable and
of the same order of magnitude for Pr <1, both
decreasing the rate of heat transfer; solutions which
neglect either are not then valid.

As Pr decreases below unity and J increases the
approximation made herein for the effect of the inertia
of the condensate becomes inaccurate, resulting in the
overprediction of the rate of condensation.

As also noted by Koh et al. [5], Koh [6] and Chen
[7], the heat capacity of the liquid increases the rate
of heat transfer for Pr > 1 but has the opposite effect
for Pr < 1.

. 4. EFFECT OF CURVATURE

When a vapor condenses on the outside of a round,
vertical tube the effect of curvature is to provide a
greater area for flow and a greater area for heat trans-
fer for the same film thickness, thereby resulting in a
greater rate of condensation. When a vapor condenses
inside a vertical tube these effects are registered con-
versely. Solutions for these two situations are readily
derived for the extreme limiting conditions postulated
by Nusselt, including negligible drag, heat capacity
and inertia (Pr —0, J - 0).

Condensation outside a vertical tube
Equation (1) is eliminated and equation (2) is
replaced by

vd [ du oy
and equation (3) by
d/ dT
The boundary conditions become
u=0, T=T, atr=a (72)
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du
Fri 0, T=T,
Solution of equations (70) and (71) with these
conditions results in

3 (2 -2

(74)

at r=a+6.  (13)

and
T-T, In {r/a}
7,—-T, In{l1+(5/a))

(75)

The relationship between x and J is given by

2nak <§z) = Ap i

a+é
ar e J; u2nrdr. (76)

Substituting for T and u from above gives

k(Ts—Tw) __)“pga:; 1 Pv d
aln {1+@/a)} ~ 8 \' p/dx

om0
SHCIT, .

simplifying and integrating then gives

<§>4[1+§§+...]_M_K
a 3a " apatgll —(p./p)]

Letting

(78)

(79)
Hence for §/a«1
1/4
5 ( _K ) | (80)
a 143KV
Since
po k(a7
Ts_Tw dr r=a
aln {1+(0/a)} ~ 51 —4(8/a)]
Y 2K 14
Nu,,=h—D~ (1+4K"%) (82)

kT 3K/ +3K )R

The series expansions and the approximation incor-
porated in this derivation are quite justified since d/a
and KX are far less than unity for all practical con-
ditions. The factor

A+ 3KV =K/ + 3K

represents the increased rate of heat transfer due
to curvature. This correction is significant for
K > 30x 107 % or Nu, < 22.
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Condensation inside a vertical tube
The above model is changed only by the boundary
condition

d o, T=T, atr=a-s (@83
dr
and the result is
hD A1 —3KVH4
== a4k (84)

kK —3K T R
The factor
(1= 3K {1+ K1 — 3K 9] 1

represents the decreased rate of heat transfer due to
internal curvature, which is significant (greater than
5%) for K > 35 x 10 or Nu, < 26.

5. SUMMARY AND CONCLUSIONS

Solutions in closed form are presented for the effects
of the heat capacity of the condensate, the inertia of
the condensate, the drag of the vapor and the curvature
of the surface on the rate of laminar, non-rippling
condensation of a saturated vapor on a vertical, iso-
thermal surface. Since some of these closed-form
solutions do not allow direct specification of the usual
independent variables, algebraic equations are also
provided which can readily be solved by iteration for
specified values of these variables.

These solutions have a greater range of validity than
previous solutions in closed form. However, approxi-
mations incorporated in these new solutions restrict
their applicability for small Pr to small values of
c(T,—T,)/A. Most practical applications do fall
within their range of validity.

The effects of vapor drag and inertia were both
found to be appreciable for Pr < S.
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The solutions for the effect of curvature, although
in the form of perturbations of the Nusselt solution,
are applicable for the more general conditions noted
above.

For Pr > 1 the heat capacity of the liquid increases
the rate of heat transfer as implied by the approximate
solutions of Bromley [2] and Rohsenow {3}, but has
the opposite effect for Pr < 1.

The effect of curvature increases the rate of heat
transfer significantly for condensation outside a ver-
tical tube only for conditions such that Nu, < 27, and
decreases the rate of heat transfer for condensation
inside a vertical tube correspondingly.

Acknowledgement—The suggestions and assistance of
Dudley A. Saville, John D. Super and Philippe Binder are
gratefully acknowledged.

REFERENCES

1. W. Nusselt, Die Oberflachenkondensation des Was-
serdampfes, Z. Ver. dt. Ing. 60, 541-546, 569—575 (1916).

2. L. A. Bromley, Effect of heat capacity of condensate, Ind.
Engng Chem. 44, 2966-2969 (1952).

3. W. M. Rohsenow, Heat transfer and temperature dis-
tribution in laminar-film condensation, Trans. Am. Soc.
mech. Engrs 18, 16451648 (1956).

4. E. M. Sparrow and J. L. Gregg, A boundary layer treat-
ment of laminar-film condensation, Trans. Am. Soc. mech.
Engrs 81, 13-17 (1959).

5. J.C. Y. Koh, E. M. Sparrow and J. P. Hartnett, The two
phase boundary layer in laminar film condensation, Int.
J. Heat Mass Transfer 2, 69-82 (1961).

6. J. C. Y. Koh, On integral treatment of two phase bound-
ary layer in film condensation, J. Heat Transfer 83, 359—
362 (1961).

7. M. M. Chen, An analytical study of laminar film con-
densation, Part 1 flat plates, J. Heatr Transfer 83, 48-54
(1961).

8. J. D. Hellums and S. W. Churchill, Simplification of the
mathematical description of boundary and initial value
problems, A.I.Ch.E. JI 10, 110-114 (1964).

CONDENSATION EN FILM LAMINAIRE

Résumé—La solution classique de Nusselt pour la condensation en film sur une surface verticale néglige
les effets de la chaleur sensible et de I'inertie du condensat, la trainée de la vapeur et 1a courbure de la surface.
Les solutions qui tiennent compte de ces effets secondaires ont des formes peu adaptées 4 I'utilisation. Cette
étude présente des solutions générales applicables pour des valeurs paramétriques arbitraires. Ces solutions
sont trés précises pour de grands Pr mais sont limitées aux faibles valeurs de C, AT/A pour des petits Pr.
L’inertie du condensat et la trainée de la vapeur sont appréciables tous les deux lorsque Pr < 5.

LAMINARE FILMKONDENSATION

Zusammenfassung—Die kiassische Losung von Nusselt fiir die laminare Filmkondensation an einer sen-
krechten Oberfliche vernachlissigt die Einfliisse der fithlbaren Wirme und der Trigheitskrifte des Kon-
densats, die der Dampfschubkrifte und die der Kriimmung der Kondensatfilmoberfidche. Die fritheren
Lésungen, die sich mit diesen sekundiren Einfliissen befassen, sind in der Regel firr Berechnungen unge-
eignet. Der vorliegende Bericht gibt erweiterte Lsungen in geschlossener Form an, die daher fiir beliebige
Parameterwerte anwendbar sind. Die Losungen sind sehr genau fiir groe Prandtl-Zahlen, aber beschrinkt
auf kleine Werte ¢, * AT/A fiir kleine Prandtl-Zahlen. Sowohl die Tragheitskrifte des Kondensats wie auch
die Schubkrifte des Dampfes zeigen flir Pr < 5 betrichtliche Auswirkungen.
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JJAMHUHAPHAS TIVIEHOYHAA KOHAEHCAUHWA

Annotaums—B knaccuyeckoif 3anade HyccenbTa o JJaMUHApHOH ILICHOYHOM KOHOEHCALMM HA BEPTH-
KaJIbHOI MOBEPXHOCTH MpPeHOpPEraeTCA 3aBUCMMOCTBIO (PU3NYECKUX CBOHCTE-OT TeMNepaTypshl, BIUSHHEM
HHEPUMOHHBIX CHJI, TPEHHEM Ha I'paHHMLE pa3jeia nap-XUAKas rieHKa H KpHBH3HOM nosepxHocTH. Panee
MOAY4YEHHbIE PELLICHHUS, YYHTHIBAIOLIHE 3TH BTOPHYHbIE HPHEKThI, Hey JOOHB! 11 NPAKTHYECKOTO HCMOb-
3oBaHHsa. B naHHOH paboTte AaroTcs pelicHHst B 3aMKHYTOH ¢opMe, MPUMEHMMbIE L1 NMPOH3BOJIbHBIX
3HAYEHMH MapaMeTpoB. DTH PeLUEHHs AOCTATOYHO TOYHBI M Oonbmux uncen [IpaHaras, B To Bpems,
KaK /Ul MasbIX OrpPaHH4MBaroTCA HeGosbluMMH 3Havenusmu C AT/Ai. Haineno, 4to BimsHue uHep-
LUHMOHHBIX CHJI ¥ TPEHHS Napa 3aMeTHBI NIpH Pr < 5.



